Enhanced Performance for Treatment of Cr (VI)-Containing Wastewater by Microbial Fuel Cells with Natural Pyrrhotite-Coated Cathode

نویسندگان

  • Junxian Shi
  • Wenyan Zhao
  • Chang Liu
  • Tao Jiang
  • Hongrui Ding
چکیده

Here we reported the investigation of enhanced performance for the removal of hexavalent chromium (Cr (VI)) by a new microbial fuel cell (MFC) with natural pyrrhotite-coated cathode. By comparisons of the graphite-cathode, the MFCs equipped with a pyrrhotite-coated cathode generated the maximum power density of 45.4 mW·m−2 that was 1.3 times higher than that of with bare graphite cathode (35.5 mW·m−2). Moreover, the Cr (VI) removal efficiency of 97.5% achieved after 4.5 h compared with only 46.1% by graphite cathode MFC. In addition, Cr (VI) removal rate with different initial Cr (VI) concentrations for 10 mg/L and 30 mg/L was investigated and a decreased removal percentage with increasing Cr (VI) concentration was observed. Batches of experiments of different pH values from 3.0 to 9.0 in catholyte were carried out to optimize system performance. The complete Cr (VI) removal was achieved at pH 3.0 and 99.59% of Cr (VI) was removed after 10.5 h, which met the requirement of the Cr (VI) National Emission Standard. When the value of pH was decreasing, the removal rate was obviously increased and Cr (VI) could be removed successfully with a broad pH range indicating pyrrhotite-coated cathode MFC had more extensive usage scope. Furthermore, cathode treatment products were studied by X-ray photoelectron spectroscopy (XPS), Cr2O3, Cr (III)-acetate were detected on the cathode by the XPS Cr2p spectra and no Cr (VI) founded, indicating that the Cr on the surface of cathode was Cr (III) and Cr (VI) were reduced. On cathode, pyrrhotite not only played a significant role for catalyst of MFCs, but also acted as reactive sites for Cr (VI) reduction. Our research demonstrated that pyrrhotite, an earth-abundant and low-cost natural mineral was promised as an effective cathode material. Which had great potential applications in MFCs for reduction of wastewater containing heavy metals and other environmental contaminants in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

Tetracycline Antibiotic Removal from Wastewater via Air-Cathode Microbial Fuel Cells

Background and objective: Tetracyclines are the second most used group of antibiotics in the world. This type of antibiotic has a weak attraction in the body and enters wastewater through urine and feces. This study investigated the effectiveness of tetracycline removal from wastewater by air-cathode microbial fuel cells. Materials and methods: The current study was bench-scale experimental re...

متن کامل

Production of electricity during wastewater treatment using a single chamber microbial fuel cell.

Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017